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“Current research suggests that with enough melodies a net might, for
example, replicate new works in the style of learned music.”

– David Cope (Cope 16).

Introduction
The goal of this project was to implement a melody composing system using a neural

network.  Particularly, after basic testing of the network implementation code, the network was
trained using existing melodies from the body of traditional Gregorian chant.  Gregorian chant
was the primary sacred music of the Roman Catholic church for many centuries – being widely
adopted around the ninth century and continuing to be used in one form or another through the
twentieth century (Hiley, 479).  The style of this music has often been difficult to analyze using
traditional methods but it is clear that it contains many signature patterns and note groupings
(Hiley, 46-7).  An underlying premise of the project was that a neural network would be capable
of learning some of the local patterns occurring in Gregorian chant from a series of examples.
The trained network could then be used to “predict” the next note in a melody given some
context taken from the melody up to that point, and through iteration would be capable of
producing new melodies containing some of the stylistic signatures of the repertoire used to train
the network.

Once a neural network is trained, it becomes a static computing machine; a network will
always give the same output for a given input because it does not retain any internal state.
Because the network is being used to compose the notes of a melody sequentially and one at a
time, some mechanism had to be devised to allow the network to “remember” the context it is
working within.  The basic principle employed to allow the network to retain some state is called
markov chaining.  A markov chain is a sequence in which the value of each new member
depends on the values of some number of previous members of the sequence.  Thus, by including
several of the previously generated output notes as inputs to the network, the next note in a
melody could be determined based on the pattern of notes immediately preceding it.  The process
starts by presenting the network with a single starting note and feeding back successive outputs
to the inputs.  This iterative process would produce a sequence of notes which is the new
melody.

To connect this to a neural net, I will use n input groups (each group consisting of several
neurons representing different notes) with one group being the current note of a melody and the
others the previous n-1 notes of the same melody.  A single output group will constitute the
output layer of the net.  I plan to use unsupervised learning employing Hebb’s law.  I will
probably experiment with many different internal structures and starting configurations as well
as vary the number of input groups in order to achieve the most pleasing results.

Implementation
It was decided early on to implement the melody composer in the most popular language

for artificial intelligence research, Lisp.  In particular, Macintosh Common Lisp – a modern



implementation of the Common Lisp standard – was chosen for several reasons.  The interactive
environment of MCL makes it possible to quickly prototype and test variations on code without
sacrificing too much execution speed since it is compiled.  Also, a free and open source
framework for music programming called Common Music is available in Lisp code running
within the MCL environment.  Using Common Music made it possible to get fast and audible
feedback about the musicality of the network’s output by playing the melodies as MIDI
sequences1.  The third reason for choosing MCL was because it was available on my home
computer.

The code for the melody composing system is divided up into several conceptual layers
which are portrayed in figure 1.  Because there is no standard matrix library in Common Lisp, I
wrote one (see code listing 1) to simplify the calculations within the neural network.  My neural
network library (code listing 2) is built on this matrix library and implements a class for creating
networks that use the Hebbian learning algorithm.  Hebbian learning was chosen because it is a
form of unsupervised learning (which I felt would be an asset in possibly allowing the network to
be more “creative”) and because it was rather straightforward to implement (Negnevitsky 198).
The hebbian-net class is generic in the sense that it allows any number of layers with any
number of neurons in each layer.  It is also possible to select the activation function, learning
rate, and forgetting rate for each net object created (Negnevitsky 199).  Three methods are
provided for initializing the weight and threshold matrices: hnet-initialize-random,
hnet-initialize-identity, and hnet-initialize-limited-identity (a
variation I tried while testing the melody composer).  Finally, since the structure of the network
is no different than nets which use other learning algorithms such as back-propagation, it is
possible to substitute another learning function for the class method hnet-train if one
wanted to use something other than hebbian learning.

Figure 1.  The layered structure of the melody composer system.

The musical scale layer implements a class (see code listings 4 and 5) that allows for the
encoding of the notes of a scale as numbers which can eventually be presented to a neural net.
Also included are the definitions as global variables of the scales which I used in testing the
system.  Another very small layer (just one Lisp form) is shown in code listing 7 and defines a
                                                
1 MIDI stands for Musical Instrument Digital Interface and is a standard for storing and playing
musical data comprised of lists of notes and other musical “gestures” instead of using direct
audio recording and playback.
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process object (part of Common Music) called chant-player which transforms a list of notes
into a MIDI sequence and directs the computer’s MIDI implementation to play the sequence.
This is how I listened to the results of the system (as well as tested the input for correctness).

The uppermost layer and the most abstract is the layer for training networks with
melodies and composing new ones.  This layer effectively insulates the user of the system from
worrying about how the neural network is implemented and used by the melody composer.  The
function train takes as arguments a musical-scale object, a list of melodies (each a list of
notes), the markov order of the composing process (i.e. how many previous notes are used as
inputs), and the number of epochs for the training.  train takes care of creating a new neural
net object of an appropriate size given the scale and markov order and makes calls to train-
melody repeatedly for each of the melodies it was passed.  The last important function in this
layer is the generate-melody function.  It takes a previously trained net, a scale, a starting note,
and a length (in notes) and creates a new melody represented as a list of note names within the
given scale.

Figure 2. The structure of the melody composer.

The basic structure of the melody composer is shown in figure 2.  During training, the
current note of a melody and the k previous notes (k is the “markov order”) are presented as
input to the network.  On the next iteration, the current note becomes the next note in the melody
and all of the previous notes shift accordingly (down in the diagram).  The output note is ignored
during training (since this is unsupervised learning).  After training, when the net is being used to
compose a new melody, the current note is left empty (see below) and only the previous notes
are given as input.  The output note is taken as the next note in the sequence and is fed back to
the position of note n-1 for the next iteration while all the other previous notes shift down one
slot in the input.

Each input and output note in figure 2 actually corresponds to a group of neurons within
the input or output layer, respectively, of the network.  These groups have one node for each
pitch or other musical gesture represented by the current musical-scale object being used.
For example, the scale labeled *c-major-scale* in code listing 4 is defined to have eight
pitches and so each input and output group in a net using this scale will have eight neurons.
Input to a note group is a vector of binary digits with a ‘1’ meaning that a particular note is ‘on’
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and a ‘0’ indicating that it is ‘off.’  Thus, for each input group, there is only ever at most one
node being activated during each iteration of training or composing.  An empty note is
represented by a vector of all zeros.  Empty notes are presented as inputs to the current note
group during composition and to previous note groups when there are not enough previous notes
to fill all of the slots (such as at the beginning of training or composition).

Early Testing and Results
Before attempting to use the melody composer to imitate chant melodies, I first tested the

code with smaller and simpler examples using a pentatonic scale (a five note scale – see the
definition in code listing 4).  As one test, I trained a network with the following command:

(train *pentatonic-scale* '((c e g d c e g a g)) 4 10)
This creates a new network using the pentatonic scale and a markov order of 4 and then trains it
for 10 epochs on the melody given as the second argument.  The network has two layers with 25
nodes in the input layer and 5 in the output layer.  The network was initialized with the hnet-
initialize-identity method which assigns weights of 1.0 to connections of the current
input note group to the output group for nodes which represent the same pitch.  All other weights
are set to zero and the thresholds are randomized.  I tested the trained net by giving it individual
inputs starting with only one previous note, C.  Table 1 shows the outputs for several inputs to
this network.

Input Output
(nil c nil nil nil) (E)
(nil e c nil nil) (G)
(nil g e c nil) (D A)
(nil d g e c) (C)
(nil a g e c) (C)

Table 1.  Several inputs and outputs to a simple network.

The nil values are empty notes and the first slot of each input which is always nil
corresponds to the current note group in figure 2.  So when the net is presented with only the
starting note C (row 1 of the table), it produces the output note E, which matches the original
melody the net was trained with.  Taking E as the next note of a melody and substituting it back
in for another iteration gives the input pattern in row 2 which produces the output G.  Since G
always follows the pattern C E in the training melody, this can also be considered a match.  Row
3 of the table presents C E G as the previous notes and obtains two notes as outputs.  When this
happens, it is assumed that the network learned both patterns and that either note is a possible
next note for the melody being generated.  The generate-melody algorithm deals with this
situation by randomly selecting the next melody note from among all of the output notes.  In this
case, it is clear that the network has learned the patterns C E G D and C E G A from the training
melody.  The last two rows of the table show the output of the network when either D or A is
taken as the fourth note of the new melody.  The output of C  for row 4 is completely expected
while the output of C for row 5 shows that the net did not learn the pattern of the last five notes
of the input melody.  When the system is asked to generate a complete melody from this
example, it generates a random sequence of the two patterns C E G D and C E G A.  While the
goal of the melody composer is not to exactly duplicate its input, I took these tests as an
indication that the implementation was working – that it was indeed learning note patterns from
its training examples.



Problems started to appear, however, when I expanded this simple example to a longer
training melody.  Training with the following statement

(train *pentatonic-scale*
  '((c e g d c e g a g e d e d c g e g a g)) 4 10))

produced a network which did not behave as expected.  The summary of outputs for various
starting notes shown in Table 2 is very telling.  It shows for every possible starting note except
A, the trained net returns all possible outputs.  And starting note A returns all notes except G as
output.  These examples are pretty typical of the output of the network regardless of its input.
What they indicate is that at each iteration of generating a new melody, the selection of the next
note is pretty much random from among all of the notes in the pentatonic scale.  This clearly will
not reproduce any of the patterns in the training melody except accidentally.

Input Output
(nil c nil nil nil) (C D E G A)
(nil d nil nil nil) (C D E G A)
(nil e nil nil nil) (C D E G A)
(nil g nil nil nil) (C D E G A)
(nil a nil nil nil) (C D E A)

Table 2.  Outputs for various starting notes of a net trained with a longer melody.

I tried varying the number of epochs the network was trained with, as well as the learning
rate, forgetting rate, and markov order.  None of these changes significantly improved the output.
I also tried adding hidden layers to the net and initializing it randomly, and there was still no
improvement in the results.

Moving on to chant melodies
As a source for Gregorian chant music, I used a reprint of an old liturgical book called the

Antiphonale Monasticum.  It is a collection of all of the music which has traditionally been used
as a part of daily prayer by the Catholic Church.  In particular, I chose three melodies which are
similar to each other because of the scale which they use (mode 1 – the “Dorian” mode) and
because of their purpose within the liturgy as antiphons before the singing of the Magnificat
prayer during Vespers (evening prayer).  The melodies I chose are from the liturgies for Tuesday
of Holy Week and first vespers of the first and third Sundays of Advent (Antiphonale
Monasticum 394, 186, 203).

The melodies were encoded for the Dorian scale representation of code listing 5 and the
corresponding note lists are shown in code listing 6.  The representation of the melodies includes
the various pauses and measure lines that occur in chant music as the symbols QBAR, HBAR,
BAR, and DBAR.  It was hoped by including these musical gestures in addition to the note
pitches that the network would learn the characteristic patterns that occur at the beginning and
ends of phrases in chant.

I trained a new neural net with these melodies using a markov order of six and ten
epochs.  I then generated several melodies, two of which are shown in table 3.  None of the
melodies created really reflected the style of the chant input melodies.  They frequently contain
large leaps between pitches which is not characteristic of chant and the pause symbols occurred
much more frequently than normal and at ackward points in the melodies.  Once again, various
parameters for initializing the network and various net architectures were tried in an attempt to



improve the results.  Varying the  learning and forgetting rates did have some effect on the
training.  But when I examined the outputs of the net for individual inputs, I generally found that
it was an “all or nothing” situation.  For some learning and forgetting rates, the network would
“learn” all output notes as possibilities for most input combinations and for others it would learn
none of the output notes.  So it was a choice between nearly random output or no output at all.  I
attempted at one point to “optimize” the forgetting rate by writing a function which iteratively
trained new networks while narrowing the lower and upper bounds on the forgetting rate,
searching for a value which would give something in between “all or nothing” as output.  A
value was never found within six or seven digits of precision for the forgetting rate.

Input Output
(generate-melody *dorian-mode*
‘d4 cn 62)

(D4 G4 D4 HBAR C4 G4 BF4 F4 G4
B4 D4 D4 D4 C4 A4 E4 QBAR HBAR
BF4 F4 C5 F4 BAR B4 G4 D5 D5
BF4 HBAR BF4 HBAR A4 F4 BF4 C4
D5 C4 G4 D5 F4 D5 F4 C4 BF4
QBAR BAR F4 C4 A4 D5 HBAR D4 C5
BAR G4 B4 C4 G4 E4 D5 B4 A4 B4
E4)

(generate-melody *dorian-mode*
‘c4 cn 40)

(C4 E4 A4 G4 G4 B4 C5 B4 C5 D5
A4 G4 E4 D5 D5 A4 C5 C4 A4 C5
D4 A4 BF4 G4 C5 BF4 BF4 E4 B4
D4 C5 QBAR BF4 QBAR C5 F4 B4 C4
HBAR BF4 HBAR F4)

Table 3.   Two melodies generated by a network trained with chant.

Wrapping it up
The output of the neural networks which I trained to replicate Gregorian chant melodies

is very poor.  It does not contain any of the signature patterns contained within the training
melodies and does not even imitate the simple stepwise motion of most chant.  Instead it leaps
about rather randomly and stutters due to the frequent and unnatural occurrences of the “pause
gestures.”  While the results of this project were less than successful, I do not believe that it
means that the premise of the work is untenable.  Other researchers have had more success with
training neural networks to compose music that stylistically resembles its input than I have had
here.  For example,  Mozer has had some success with using  a “recurrent autopredictive
connectionist network” to compose new melodies in the style of J.S. Bach and European folk
melodies (Mozer 1).  Chen and Miikkulainen have used a simple recurrent network architecture
to imitate the work of Bartok (Chen and Miikkulainen 2).  And others have been able to imitate
the harmonic style of other bodies of music using neural networks.

I think that my work should be continued and more experimentation is needed.  Other
network architectures may prove to be better suited than the one I used here.   While the
feedback mechanism I used allowed for some context saving, an architecture like the simple
recurrent network which has an special internal and hidden layer of nodes which feedback to the
normal hidden layer may provide better results.  I also think that it would be better to use far



more melodies for training the network.  Around the order of 50-60 would likely be better than
the three I tried in this project.
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